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Abstract

This paper deals with the variability of the dynamic behavior induced by transmission error of a mass production gear

pair. The origins of this variability are due to the manufacturing errors. The tolerances that are associated with shaft

misalignment errors, gear tooth profile and lead errors, are considered as geometric independent random parameters. A

procedure based on Taguchi’s method is used to treat the tolerances statistically. The efficiency of this methodology is

demonstrated by considering a simple dynamic model of a single spur gear pair. The predicted variations in dynamic

behavior due to tolerances are verified by comparison with results obtained using Monte Carlo simulations. The analyzed

parameters are firstly the static transmission error and the time-average mesh stiffness. As a consequence of the variability

of the mesh stiffness, statistical variations of natural frequencies are observed for critical modes (high-energy modes). The

related critical speed ranges are given too. At last, the variations of the high-energy mode shapes are also observed.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Gears form a reliable and efficient way of transmitting rotational motion under loaded conditions.
However, their noise characteristics are often unacceptable, especially for closed transmissions. Significant
progress has been accomplished in analyzing gearbox noise mechanisms [1]. The transmission error, a concept
that was first introduced by Harris [2], has been proposed to constitute one of the main sources of excitation
for gearbox noise [3–7]. Under steady-state dynamic operating conditions, a gear mesh can generate dynamic
mesh forces and moments that are transmitted to the housing through shafts and bearings. As a result, the
vibrating surfaces of the housing radiate gearbox noise.

The transmission error depends on instantaneous tooth contact conditions and is governed by tooth surface
geometry and elastic deformations of gear teeth and blanks. Many studies have focused on the selection of
optimal tooth profile design and gear geometry to minimize transmission error [8–11], and hence, the noise
radiated at a specific design load. Nonetheless, although such an optimal design has been identified, it is still
difficult to manufacture gears having this optimal geometry. Designers must introduce tolerances around these
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

c diagonal modal damping matrix
C damping matrix
d non-diagonal ‘‘modal’’ matrix related to

matrix D

D 12� 12 square matrix depending on
pinion and gear geometry

e(t) equivalent force excitation vector asso-
ciated with STE displacement excitation

fi ith eigenfrequency
fmesh mesh frequency
frot,j rotation frequency of gear j

F input load applied on pinion
Fa, Ha scalar parameters describing profile mi-

cro-geometry of gears
Fb, Hb scalar parameters describing lead micro-

geometry of gears
g vector of initial gaps related to tooth

micro-geometry
h(t) zero mean time counterpart of the mesh

stiffness
H compliance matrix of contact line
I identity vector, IT ¼ h1; 1; . . . ; 1i
k diagonal modal stiffness matrix
km(t) mesh stiffness as a function of pinion

angular position (or time)
K stiffness matrix provided by FE modeling

Km time-averaged value of mesh stiffness
over a mesh period

Kt overall stiffness matrix provided by FE
modeling

m diagonal modal mass matrix
M mass matrix provided by FE modeling
Nj angular speed of gear j in rev/min
p pressure distribution on contact line
pk kth coordinate of the vector p
q(t) vector of the modal coordinates
ri base radius of gear i

s(t) vector of the modal force
TB interval of length equal to tolerance band
Tmesh mesh period
x(t) vector of nodal displacement response
y vector of slack variables
yk kth coordinate of the vector y
Zj number of teeth of gear j

L static transmission error expressed as a
displacement along the line of action,
STE

m, s respectively the mean value and standard
deviation of a random variable

ri energy coefficient of the ith mode,
designed for critical mode identification

yi angular position of gear i (i ¼ 1 pinion; 2
gear)

/i ith eigenvector
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nominal optimal design values. These tolerances dictate the micro- and macro-geometry of a gear and thus
significantly affect transmission error and gear mesh stiffness. Robust optimization procedures were
implemented in order to select optimal gear design parameters that took into account manufacturing errors
and tolerances [12,13], but they mainly focused on transmission error as a response function. Even after
having found an optimal design, tolerances are still responsible for variable behavior. Nonaka et al. [14]
showed experimentally that noise levels radiated by mass-produced gears vary considerably. At certain
rotational speeds, they reported that noise level variability can exceed 10 dB for gear pairs with the same
nominal parameters. According to the authors’ review, this problem had been ignored previously and a
preliminary study [15] provides numerical results that correlate with the experimental results given by Nonaka
et al. [14].

Precision gears are costly to manufacture and lower accuracy can lead to product failure and heavy wear.
Therefore, a compromise must be found between reduced variability and cost. This compromise is especially
important for automotive and industrial applications that aim at improving quality, reliability and noise
characteristics without any cost penalty.

As narrowing every possible tolerance is not feasible, it is critical to identify the most sensitive parameters.
This subject was dealt with by several previous studies using design of experiments and surface response
functions or variance analysis. As far as gear dynamics is concerned, the parameters most sensitive to
manufacturing variations were found to be profile and lead modifications applied on involute tooth geometry.
The set of tolerance values on tooth geometry defines the quality class of the gear. Because it is not possible to
reduce all of these tolerances, the most appropriate quality class for each characteristic has to be selected. This
selection can be achieved in three steps: (1) the definition of a quality class based on the nominal values of
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tooth micro-geometrical parameters; (2) the introduction of tolerances in gear dynamic modeling for
computing transmission error variability as well as radiated noise level variability; and (3) the optimization of
quality class choice with an objective function related to variability computed previously and cost considered
as a constraint. This paper focuses on the first two steps and presents an efficient process for handling input
variability and uncertainties induced by tolerances and output variability of transmission error, mesh stiffness
and dynamic response of a simple gearbox. A probabilistic approach will be employed for the treatment of
tolerances in the model. Statistical results will be obtained using two different methods, namely Monte Carlo
simulations and Taguchi’s statistical tolerancing method. A comparative study on the applicability of these
methods to the gear noise problem will also be presented.
2. Dynamic modeling of a gear pair

The vibratory and acoustical behaviors of gearboxes result from numerous sources, the most common of
which is static transmission error under load (STE). STE is periodic with main components at the gear mesh
frequency and is basically due to (1) elastic deflections of the gear teeth under load (periodic mesh stiffness)
and (2) tooth profile modifications, manufacturing errors and shaft misalignments. Under dynamic operating
conditions, a gear pair excited by STE generates dynamic mesh forces that are transmitted through bearings to
the housing, leading to gearbox noise. Furthermore, certain resonance conditions can exist when the gear
meshing frequency is close to the natural frequencies of modes with a high level of modal potential energy
stored by the mesh stiffness [16,17]. These critical natural modes are mainly controlled by the time-average
mesh stiffness value.
2.1. Static transmission error computation

Static transmission error under load can be defined as the difference between the real position of the gear
and that which it would have if the gear pair was geometrically perfect and rigid [6]. STE can be expressed as
an angular position and, more often, as a displacement along the theoretical line of action. In order to
compute STE time history, it is necessary to solve the static–elastic balance of the gear contact problem for
each angular position of the pinion. Kinematic analysis of gear meshing allows locating the line of contact
between teeth. The equations of the static balance generated from the discretization of theoretical contact lines
in N nodes are written as

HP ¼ LI� gþ y, (1)

ITp ¼ F , (2)

either pk ¼ 0 or yk ¼ 0 (3)

subject to constraints

pkX0; ykX0 and LX0. (4)

Here, STE is expressed as the relative gear mesh displacement along the line of action L ¼ r1y1 � r2y2 where
ri is the base radius and yi the angular position of gear i ði ¼ 1; 2Þ. p and y are the normal load vector and the
vector of slack variables respectively, both with dimension N. H is the non-diagonal compliance matrix of the
line of contact, computed beforehand by using finite element (FE) modeling of gears [18,19]. I is the identity
vector (all components are equal to 1) of dimension N and g is the vector of initial gaps that corresponds to
tooth modifications and geometrical errors. Finally, F is the normal load borne by the gear teeth. Here, a
modified simplex algorithm described in Refs. [20,21] is used to solve Eqs. (1)–(4).

Taking a thin-rimmed spur gear pair, whose parameters are listed in Table 1, as the reference gear pair, STE
time histories shown in Fig. 1 are obtained under different static load values. Here, the teeth geometry of the
two gears is modified parabolically in both profile and lead directions with amounts respectively equal to 20
and 16 mm such that F ¼ 3000N represents the design load.
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Fig. 1. STE time histories of the example gear pair at different load values: ——, 0N; – – –, 1500N; – � –, 3000N; — � � —, 4500N.

Table 1

Main geometrical characteristics of the spur gear pair

Pinion Gear

Number of teeth 37 71

Base radius (mm) 52.153 100.077

Normal module (mm) 3

Pressure angle 201

Face width (mm) 24

Center distance (mm) 162
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Fig. 2. Peak-to-peak value of STE versus the input load F.

N. Driot, J. Perret-Liaudet / Journal of Sound and Vibration 292 (2006) 824–843 827
In Fig. 1, STE functions are clearly periodic at the mesh period ðTmesh ¼ f �1meshÞ and are rather sensitive to
the value of the input load applied. The first curve at F ¼ 0 N corresponds to the (unloaded) STE kinematics
due to only profile and lead modifications. Fig. 2 displays the peak-to-peak value of STE for the same
reference spur gear versus the value of the input load, further confirming that the design load is close to
3000N.

2.2. Mesh stiffness computation

Generally, out of plane deflections are assumed to be negligible. As a consequence, the transmitted normal
load is modeled by a single spring acting on the plane of action. The related stiffness is the so-called mesh
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Fig. 3. Time-average value of the mesh stiffness versus input load F.
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stiffness. It depends on both the static load and the angular position of the gears. For a constant operating
speed, the mesh stiffness is a periodic function at the known mesh frequency. For each pinion angular position
y1, the STE computation allows an estimation of the mesh stiffness km as

kmðF ; y1Þ ¼ qF=qL (5)

or written approximately as

km � dF=½LðF þ dF ; y1Þ � LðF ; y1Þ�, (6)

where dF is a small load increment.
The time-average value of the mesh stiffness Km, which governs the values of all gearbox natural

frequencies, is estimated by averaging km(t) over a mesh period. For the reference gear pair concerned, Fig. 3
displays the time average of mesh stiffness Km versus the input load. Whereas Km varies significantly under
light loads, its values tend to be relatively constant beyond the design load. This behavior is a consequence of
the fact that the involute contact ratio remains relatively constant under heavier loads. For F ¼ 3000N, time
average of the mesh stiffness is equal to 252N/mm for the reference system concerned.

2.3. Gear pair dynamic model and modal analysis

There exists numerous publications about gear dynamic dealing with a large variety of models as reported
for example in Refs. [7,22]. Depending on the scope of studies, models are more or less complex. Simple
models having few degrees-of-freedom are commonly used for analyzing complex phenomena such as
nonlinear behaviors induced by backlash [10,23]. In this case, sophisticated gear mesh interfaces are generally
developed including loss of contact, damping laws and friction forces. In this field one can quote Ref. [24] in
which gear mesh is modeled with a FE approach including contact mechanics model. On the contrary, global
models are generally introduced when overall dynamic and noise are in the scope of the studies [16,17,25–27].
In this case, shafts, bearings and housing properties are included but a linear gear mesh interface is often
retained. This choice is essentially dictated by computer time consuming.

As one of the purposes of this study is to propose a methodology for analyzing the variability of global
dynamic behavior, we have retained this last kind of models. Without loss of generality, the housing is
however assumed to be rigid. The reference gear pair-shaft-bearing system under study is shown in Fig. 4 and
is modeled using the FE method. The pinion and the gear are modeled with concentrated masses and inertias.
A specific 12� 12 stiffness matrix, i.e. km D, is introduced to couple the pinion and gear, both of them having 6
degrees of freedom (dof). This matrix is defined from the geometric characteristics of the gear pair and from
the mesh stiffness previously computed [28]. The shafts are discretized using beam elements with 2 nodes and 6
dof per nodes. The base radii are equal to 45 and 85mm for the pinion and gear shafts, respectively. The span
of the bearings is equal to 75mm for both shafts. The motor and the external loads (respective inertias are
0.05 kgm2 and 0.026 kgm2) are connected to the shafts by using rotary inertia and a simple torsion stiffness
element (8� 104Nm/rad for the both). A 10 � 10 stiffness matrix is introduced to model tapered bearings



ARTICLE IN PRESS

Z

X

Pinion

Gear

[km]

Input Inertia

Output Inertia

Fig. 4. Gear pair system finite element model.

N. Driot, J. Perret-Liaudet / Journal of Sound and Vibration 292 (2006) 824–843 829
with the use of the method described in Refs. [29,30]. The radial stiffnesses in the both direction are equal to
9� 108N/m and the axial one is equal to 1� 108N/m. Also, the flexural stiffnesses are equal to 5� 104Nm/
rad. This gear pair system model contains 40 elements and a total of 200 dof.

The modal characteristics of the gear system are obtained by considering the time-average mesh stiffness
Km, and solving the corresponding eigenvalue problem. Only a few of all the natural modes are responsible for
high vibratory and noise levels. These special modes, termed critical, are detected by computing an energy
coefficient [16,17]. For each mode i, the energy coefficient is defined as follows:

ri ¼ Km/T
i D/i=/

T
i Kt/i, (7)

where /i is the ith eigenvector, Km D is the stiffness matrix including only the mesh terms and Kt is the
complete stiffness matrix of the overall system. Higher values of ri indicate that this mode is more critical as it
is excited by STE.

Computing the dynamic response of the gearbox requires evaluating dynamic mesh force, dynamic forces
and moments transmitted to the housing through the bearings and, finally, the vibratory response of the
housing. This computation needs an appropriate method. Indeed, using time integration schemes to solve the
parametric matrix equation with periodic coefficients governing the forced vibrations of the gearbox has some
disadvantages. Considering both low (rotation frequencies of shafts) and high frequency (mesh frequency and
its harmonics) components of the excitation can increase computation time drastically, especially for systems
with a large number of dof. To avoid this difficulty, a spectral and iterative method is used here [31]. This
method allows the solution of a large system of differential equations with periodic coefficients within a
reasonable computation time. The method is based on a spectral description of the mesh stiffness fluctuation
and of the external force vector produced by STE.

The time-average mesh stiffness can be assumed to be unaffected by the dynamic motions of the gear pair
for stationary running conditions when the dynamic mesh load amplitudes remain low in comparison to the
static load produced by the input torque. Taking these assumptions into account, the vibratory response of the
gear system is therefore governed by the following system of linear differential equations with periodic
coefficients:

M €xþ C _xþ Kxþ kmðtÞDx ¼ eðtÞ. (8)
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Table 2

Natural frequencies of critical modes and corresponding energy coefficient

Modal number i Natural frequency fi (Hz) Energy coefficient ri (%)

1 249.9 3.6

2 407.1 2.6

6 1738.1 0.8

7 1759.8 33.7

9 2421.5 28.1

10 3666.3 0.01

11 4127.6 23.7

14 5374.2 7.2
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In Eq. (8), vector x(t) is the vector of vibratory response of the discretized gearbox, an overdot represents
differentiation with respect to time and M and K are mass and stiffness matrices provided by the FE
formulation. The elastic coupling at the gear mesh is introduced by km(t), which represents periodic mesh
stiffness fluctuation and D, a 12� 12 matrix deduced from pinion and gear geometry. Matrix C represents the
damping that is introduced later into every modal equation in the form of an equivalent viscous damping ratio
for each mode. Finally, e(t) is an equivalent force vector associated with the displacement counterpart of STE
excitation. Once the modal analysis is performed using the time-average mesh stiffness value, Eq. (8) becomes

m€qþ c_qþ kqþ hðtÞdq ¼ sðtÞ. (9)

In Eq. (9), m, c and k are the diagonal counterpart modal mass, damping and stiffness matrices, q(t) is the
vector of the modal coordinates, s(t) is the modal force vector, d is a non-diagonal matrix introduced by the
parametric excitation, and hðtÞ ¼ kmðtÞ � Km is the zero mean value mesh stiffness fluctuation. The forced
response is expanded on the modal basis that has to include all critical modes. The spectral and iterative
method provides the complex spectrum of the vibratory response directly for each dof of the modeled system.
The processing time required by this method is about two orders of magnitude shorter than that of a classical
numerical time integration scheme [31]. For memory, the fundamentals of the method are reported in
appendix.

If we return to the example gear system of Fig. 4, the modal behavior is obtained by considering the average
value Km ¼ 252N=mm at the input load F ¼ 3000N. Table 2 displays the natural frequencies of the most
critical modes and their corresponding energy coefficients. As the sum of energy coefficients is almost equal to
100%, the range 0–5500Hz can be seen to include all critical modes. In order to illustrate the shapes of the
critical modes, Fig. 5 shows the shapes at the gear mesh for the 6, 7 and 19th modes. In relation with the
energy coefficients, one can observe that the gear stiffness is not stressed for the 6th mode in contrast to the 7
and 9th modes. One can also notice that the critical modes cannot be classified as torsional or as flexural
modes. Indeed, all kinds of deformations contribute to the energy storage at the gear mesh.

Once the modal data are available, the dynamic response is obtained for Km ¼ 252N=mm and STE at
F ¼ 3000N, as shown in Fig. 6 in the form of dynamic mesh force amplitude versus input speed. The main
resonances are observed at input speeds close to 3000 and 4000 rev/min and are due to resonant excitation of
critical modes. Without any surprise, these resonances are respectively due to an excitation of the 7th and 9th
modes by the mesh frequency fmesh. Other secondary resonances are observed for input speeds close to 2000
and 1500 rev/min. They correspond to an excitation of the same modes by the first harmonic of STE (2fmesh).

3. Statistical description of tolerances

3.1. Description of gear tooth modifications

In this study, tolerance ranges of profile errors, lead errors and misalignments are chosen at quality class 7
of ISO 1328. This quality class is often used in industrial and automotive applications (gearboxes, machine
tool, etc). Due to manufacturing errors, the real tooth surfaces deviate from the theoretical tooth surfaces. As
shown schematically in Fig. 7, this gap is expressed by two parameters, Ha and Fa, which govern the profile
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errors, and two additional parameters, Hb and Fb, which govern the lead errors. Here, Fa and Fb represent
quadratic errors (crown) or modifications while Ha and Hb are used to describe linear errors. Manufacturing
errors can be described by using these four parameters in combination. Consequently, the tooth surface shape
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Table 3

Statistical moments of geometry errors for an ISO 1328 Class 7 gear pair

Mean value (mm) Standard deviation (mm)

Fa 20 4.53

Ha 0 3.40

Fb 16 4.00

Hb 0 4.63

N. Driot, J. Perret-Liaudet / Journal of Sound and Vibration 292 (2006) 824–843832
is approximated by a quadratic surface. In reality, this assumption covers most practical cases, even if tooth-
to-tooth variability is neglected. Finally, a shaft misalignment is added through the lead Hb parameter. For the
example system concerned, a design load of F ¼ 3000N is obtained with the following intentional profile and
lead modifications: Fa ¼ 20mm, Fb ¼ 16mm and Ha ¼ Hb ¼ 0mm.

3.2. Statistical description of manufacturing errors

In mass production, the fluctuations of design variables within their tolerance bands are considered as
truncated random variables. It appears natural to use a probabilistic approach because the probability density
functions (PDFs) of manufacturing errors can frequently be quantified by manufacturers. Here, the
fluctuations within tolerance bands are modeled by a Gaussian variable. The mean value of such fluctuations
is the nominal value of the manufacturing error (the nominal profile and lead modifications introduced
previously), and its standard deviation is related to tolerance ranges and the quality class. The quality class
defines a bounded interval of length equal to the tolerance band (TB), in which the manufacturing error value
evolves as a Gaussian variable. The standard deviation is given by s ¼ TB=6. This description is usually
chosen in statistical robust optimization [32]. Table 3 displays mean values and standard deviations of the four
parameters described previously for an ISO Class 7 gear pair. Considering the Hb parameter, the statistical
independence of the lead error and the misalignment Gaussian variables is assumed. Then, the mean value and
the variance of Hb parameter are obtained simply by a linear combination of lead error and misalignment
statistical moments.

4. Description of statistical methods

4.1. Monte Carlo simulations

Monte Carlo simulations are commonly used to obtain reference predictions in order to test other statistical
methods. Monte Carlo simulation requires a large number of samples, therefore significantly increasing
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Fig. 8. Relative error in standard deviation (solid line) and function 1=
ffiffiffi
n
p

(dotted line) versus the number of samples.

N. Driot, J. Perret-Liaudet / Journal of Sound and Vibration 292 (2006) 824–843 833
processing time since computations of STE, mesh stiffness, modal base and forced response must be
performed and stored for each sample. The statistical moments and PDF are deduced at the end of the
simulation. The accuracy and number of samples required greatly depend on the random number generator.
In order to generate Gaussian variables, a Box and Muller algorithm is used here [33], which transforms a
uniform distribution between 0 and 1 into a Gaussian one with a chosen mean value and standard deviation.
The standard deviation of a Gaussian variable with a known standard deviation (equal to 1) is calculated to
test the simulation process. Fig. 8 displays the relative percentage error between the estimated standard
deviation and the theoretical one as a function of a number of samples n. An analytical function 1=

ffiffiffi
n
p

is also
displayed in Fig. 8. A relative error of less than 1% requires at least 10 000 samples. It can be seen that the
accuracy of the Monte Carlo simulation process increases according to the 1=

ffiffiffi
n
p

function. Consequently, the
sample size chosen for future simulation is 30 000.

4.2. Taguchi’s method

Taguchi’s method allows estimating in a very simple way the statistical moments of a function of multiple
random variables whose PDFs are known [34]. Taguchi’s method has been improved by D’Errico et al. [35] for
taking into account nonlinear effects as well and a modified Taguchi method has been used for heat treatment
problems [36]. The theoretical expressions for the first two moments of a function f (x) of k randomly
independent variables tx ¼ hx1; . . . ;xki are

E f ðxÞ½ � ¼

Z þ1
�1

f ðxÞp1ðx1Þ . . . pkðxkÞ dx1 . . . dxk, (10)

var f ðxÞ½ � ¼

Z þ1
�1

ð f ðxÞ � E f ðxÞ½ �Þ
2p1ðx1Þ . . . pkðxkÞ dx1 . . . dxk. (11)

In D’Errico’s method, each PDF of a given random variable is sampled at three or more points and a
weighting coefficient is assigned to each point depending on its PDF type. For example, Fig. 9 shows a 3-point
discretization of one Gaussian variable (mi is the mean value and si the standard deviation) with associated
weightings wi. The response function is evaluated for all point combinations, and is equivalent to a full
factorial design of experiments with M responses or point combinations. The modified Taguchi process is
based on numerical integration techniques such as the Gauss–Hermite quadrature method for the function of
multiple variables. The mean value and the variance of the function are estimated by a linear combination of
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the responses obtained previously with full factorial design of experiments as follows

E f ðxÞ½ � ¼
XM
i¼1

W if i, (12)

var f ðxÞ½ � ¼
XM
i¼1

W iðf i � E f ðxÞ½ �Þ
2, (13)

where W i ¼
Qk

i¼1wi. For each uncertain variable, at least three samples are necessary to take into account the
nonlinear behavior of the response function. The accuracy increases rapidly with the number of samples
considered. In this study, M ¼ 34 ¼ 81 is used to treat four random variables with 3 points per random
variable. The main advantages of this method are the ease of its numerical implementation and computational
efficiency. Furthermore, non-Gaussian PDFs could be easily introduced by choosing convenient points and
weightings (see, for example, Ref. [37]). However, the Taguchi method cannot provide the PDF of the
response function, which can be considered as a disadvantage.
5. Statistical results

5.1. Statistical variation of STE

First, the statistical variation of STE for the example system is presented. Fig. 10 presents the PDF of the
peak-to-peak value of STE under four different input load levels. These PDFs are obtained by using Monte
Carlo simulations. When not close to the design load (F ¼ 3000N for the example case) the PDFs take a
symmetrical curve with a Gaussian shape. Close to the design load, the function of the PDF is asymmetric
taking the shape of a Weibull curve. This symmetrical and asymmetrical behavior could be explained by the
progression of the peak-to-peak value of STE versus the input load. Close to the design load, this progression
is not a one to one mapping. For light and heavy loads, this evolution is uniform versus the input load. Table 4
compares the first two statistical moments of the peak-to-peak value of STE obtained by using both the Monte
Carlo method and Taguchi’s method.

All the statistical results obtained with Taguchi’s method are in very good agreement with those obtained by
the Monte Carlo simulations considered as the benchmark. Variability is significant since the magnitude of the
standard deviation is close to the magnitude of the mean value, especially at design load F ¼ 3000N.
Moreover, the peak-to-peak value of STE is not the only characteristic affected by tolerances: the STE time
histories are also modified by tolerances, as shown in Fig. 11 at the design load for three possible micro-
geometries within the tolerance ranges.
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Table 4

Mean values E(Lpp) and standard deviations s(Lpp) of the peak-to-peak value Lpp of STE at different input loads

Input load F (N) E(Lpp) Monte Carlo (mm) E(Lpp) Taguchi (mm) s(Lpp) Monte Carlo (mm) s(Lpp) Taguchi (mm)

500 5.00 5.01 1.60 1.64

1500 2.59 2.79 1.38 1.35

3000 2.06 2.22 0.95 1.01

8000 14.3 14.3 1.52 1.52

Fig. 10. PDF of the peak-to-peak value of STE at different loads: (a) F ¼ 500N, (b) F ¼ 1500N, (c) F ¼ 3000N and (d) F ¼ 8000N.
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5.2. Statistical variation of the time-averaged mesh stiffness

In Fig. 12, the PDFs of the time-average mesh stiffness obtained by Monte Carlo simulations are shown.
Curves in dotted lines correspond to theoretical Gaussian functions built using the first two moments obtained
by Monte Carlo simulations.

The general trend observed here is that PDFs are almost Gaussian functions regardless of F. Table 5
provides the first two statistical moments of the time-average mesh stiffness. A comparison of the variability
predicted using the Monte Carlo method and Taguchi’s method is listed in Table 5 for E(Km) and s(Km),
respectively.

The ratio of standard deviation to the mean value is within 10% for each load case. At higher loads, the
mean value of the time-average mesh stiffness value is equal to the deterministic one. This is due to the fact
that Km does not change at high loads, as shown in Fig. 3 earlier.
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Fig. 11. Three different STE time histories at design load obtained for manufacturing errors randomly chosen within allowable tolerance

bands of the ISO quality class 7.

Fig. 12. PDF of Km at different load values; (a) F ¼ 500N, (b) F ¼ 1500N, (c) F ¼ 3000N and (d) F ¼ 8000N. Results obtained by

Monte Carlo simulations (solid line) and compared to theoretical Gaussian functions (dotted line).

Table 5

Mean values E(Km) and standard deviations s(Km) of Km at different input load values

Input load F (N) E(Km) Monte Carlo (N/mm) E(Km) Taguchi (N/mm) s(Km) Monte Carlo (N/mm) s(Km) Taguchi (N/mm)

500 126.6 127.0 10.36 10.6

1500 197.0 197.0 13.60 12.8

3000 245.6 247.6 10.47 10.5

8000 283.0 282.0 0.89 0.95

N. Driot, J. Perret-Liaudet / Journal of Sound and Vibration 292 (2006) 824–843836
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5.3. Statistical correlation between STE and mesh stiffness

STE and Km are physically coupled thus it seems natural that they are statistically correlated as well. Table 6
provides an estimation of the statistical correlation coefficient related to the covariance between the peak-to-
peak value of STE and Km. This coefficient is computed by using the Monte Carlo simulation.

The statistical correlation coefficient depends on the input load, but there is no obvious trend. This
coefficient is negative for loads less than the design load and positive for loads higher than it. The design load
corresponds to a threshold but it should be noted that statistical correlation is never equal to zero. This
observation is in agreement with the progression of the peak-to-peak value of the STE versus input load
shown in Fig. 2.

5.4. Influence of PDF manufacturing errors

In order to demonstrate the influence of the PDFs associated with manufacturing errors, another Monte
Carlo simulation is performed which considers uniform PDFs. In this case, the first two statistical moments
are summarized in Table 3 though the shape of the PDF is now uniform. Fig. 13 shows PDFs of the peak-to-
peak value of STE and Km obtained at design load F ¼ 3000N.

The PDF of the peak-to-peak value of STE is still an asymmetric function, while that of Km is not a
Gaussian one. These results confirm that there is no simple relationship between the manufacturing errors and
the STE or the mesh stiffness. Knowledge of the type of PDF of the manufacturing errors is crucial because
the statistical results greatly depend on their shapes.

5.5. Statistical variation of modal behavior

If we return to the example concerned and the dynamic model shown in Fig. 4, we can introduce a random
time-average mesh stiffness for obtaining statistical data on the modal base. The manufacturing errors are
considered here as Gaussian variables. We focus our example on design load F ¼ 3000N. Table 7 lists the first
Table 6

Statistical correlation coefficient between the STE peak-to-peak value and Km

Input load F (N) Correlation coefficient

500 �0.154

1500 �0.376

3000 0.233

8000 0.431

Fig. 13. PDF of the peak-to-peak value of STE (a) and time-average mesh stiffness (b) obtained at design load F ¼ 3000N.
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Table 7

Mean values and standard deviations of natural frequencies and energy coefficients obtained fromMonte Carlo simulations and Taguchi’s

method at design load F ¼ 3000N

ni Monte Carlo simulations Taguchi’s method

E(fi) (Hz) s(fi) (Hz) E(ri) (%) s(ri) (%) E(fi) s(fi) (Hz) E(ri) (%) s(ri) (%)

1 250 0.20 3.6 0.15 250 0.17 3.6 0.15

2 407 0.22 2.6 0.10 407 0.17 2.6 0.10

3 720 0 0 0 720 0 0 0

4 1379 0 0 0 1379 0 0 0

5 1676 0 0 0 1676 0 0 0

6 1738 0.90 2.6 3.80 1738 1.00 3.6 5.50

7 1758 12.60 32.0 2.88 1758 12.60 31.0 4.30

8 2144 0 0 0 2144 0 0 0

9 2420 14.00 28.0 0.70 2420 14.00 28.0 0.70

10 3666 0 0 0 3666 0 0 0

11 4126 20.00 24.0 0.80 4125 20.00 23.6 0.90

12 5061 0 0 0 5061 0 0 0

13 5169 0 0 0 5169 0 0 0

14 5374 8.00 7.2 0.50 5373 7.80 7.2 0.50

u1 + Rb1 θ1

u2

u1

u1 + Rb1 θ1

u2

θ1

θ2
u2 + Rb2 θ2 ≈ 0

6th mode ( f = 1717.2 Hz) 

7th mode ( f = 1739.1 Hz) 

u2 + Rb2 θ2 ≈ 0

u1 ≈ 0

θ2 = 0 

θ1

Fig. 14. Mode shapes at the gear mesh for the 6th and 7th modes for Km ¼ 220N=mm.
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two moments of the natural frequencies and the energy coefficients obtained for the design load, by both
Monte Carlo simulations and Taguchi’s method.

As one can see, the modes numbered 6 and 7 are very close, with mode number 7 being the most critical
within all geometry configurations. Sometimes mode number 6 could be the most critical. That is why the
standard deviation of mode number 6 is higher than its mean value. Actually, this high standard deviation
exhibits an energy transfer between the two neighboring modes. This energy transfer is possible because these
two modes have a non-zero energy coefficient. To illustrate it, Fig. 14 (which can be compared with Fig. 5)
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shows modifications of the shapes of mode number 6 and 7 observed for a time-average mesh stiffness equal to
220N/mm. In this case, the critical modes is now the 6th mode with an energy coefficient equal to r6 ¼ 39:3%
ðr7 ¼ 0:9%Þ.

The variability of the critical modes is quite small though non-negligible. Furthermore, all the results
obtained with Taguchi’s method are once again in very good agreement with those obtained with the Monte
Carlo simulations except when an energy transfer occurs.

5.6. Critical speed ranges

The critical speeds represent the resonances when the critical natural frequencies equal the mesh frequency
or its nth harmonic:

nZjf rot; j ¼ f i, (14)

where j represents the wheel (1-pinion or 2-gear), Zj its number of teeth, frot, j its rotation frequency and fi

represents the critical mode i and its frequency. Consequently, a critical speed Nj is expressed in rev/min as

Nj ¼ 60f i=nZj. (15)

Within an input speed range of 0 to 5000 rev/min, the critical speed bands are obtained by applying
Tchebycheff’s inequality and illustrated in Fig. 15. According to Tchebycheff, the critical input speed has a
minimum probability of being inside range equal to 96% for each manufactured gearbox. These critical speeds
correspond to a resonant excitation of the 7th and 10th modes by the mesh frequency ðn ¼ 1Þ and at its first
harmonic ðn ¼ 2Þ. The bandwidths are about, 200 rev/min for the 7th and 9th modes.

6. Conclusion

This study focuses on the variability of the dynamic behavior of a gear pair system caused by manufacturing
errors. The selected manufacturing errors, introduced thanks to knowledge of the associated tolerances, are
related to lead and profile deviations from the perfect involute flank of gear teeth and shaft misalignments are
also included. We focused our attention on the static transmission error under load, the mesh stiffness and
particularly its time-average value, and the modal properties of the gear pair system, i.e. all data playing a
major role in gear dynamics. Concerning modal properties, only the eigenfrequencies and the energy stored at
the gear mesh interface are analyzed. Consequently, the critical speeds of the gearbox, for which high dynamic
tooth load and high vibratory and acoustic responses could be observed, have also been investigated. The
variability of these quantities is successfully obtained, firstly by using the classical Monte Carlo simulations
and, secondly, by an original approach based on a modified Taguchi method. With respect to implementation
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Fig. 15. The two main critical input speeds for resonant excitations of the main critical modes at mesh frequency ðn ¼ 1Þ and its first

harmonic ðn ¼ 2Þ.
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and processing time, the latter appears to be very efficient although it does not provide the probability density
functions of the responses.

Now, it is possible to conclude the following concerning all the statistical data obtained with tolerances
currently used in the automotive industry:
1.
 There is no simple relationship between the probability density functions of manufacturing errors and
the related probability density function of the STE peak-to-peak value. In particular, when the
manufacturing errors are modeled by Gaussian variables, the PDF of the STE peak-to-peak value is
rarely Gaussian.
2.
 The same remark stands for the time-average mesh stiffness, despite its probability density function being
similar to a Gaussian one. It should also be noted that the STE and the mesh stiffness are statistically
correlated.
3.
 The probability density functions of both peak-to-peak STE and time-average mesh stiffness strongly
depend on manufacturing error distributions and input load.
4.
 The variability of the time-average mesh stiffness significantly affects the modal basis of the gear pair
system. In particular, the critical modes, responsible for high dynamic responses when excited by STE, are
most affected. Energy transfers between neighboring modes having similar frequencies are observed in the
example case via the elastic potential energy coefficient.
5.
 Consequently, the critical speeds are also affected, leading to critical speed ranges. By using Tchebycheff’s
inequality, ranges up to 200 rev/min have been observed for the example case, around mean values of 3000
and 4000 rev/min.
6.
 Finally, high dispersion of dynamic levels can be predicted since strong variability of the STE peak-to-peak
value exists. Assuming that a linear relationship exists between them, we can also conclude on the non-
Gaussian behavior of these levels.

On the basis of these results, the author’s ongoing works focus on several issues the first of which concerns
the choice of the probability density functions of the manufacturing errors, because the central limit theorem
cannot be applied for characterizing static transmission error and mesh stiffness. Secondly, the occurrence of
critical speeds and the quantification of the dynamic levels must be considered separately. This is difficult to
achieve when energy transfers occur between neighboring critical modes. Thirdly, using the modified Taguchi
method for other dynamical systems appears feasible in terms of the accuracy and computational efficiency
achieved.

Appendix. The iterative spectral method

The aim of this appendix is to report bases of the iterative spectral method described in Ref. [31]. We start
description by considering Eq. (9), that is to say

m€qþ c_qþ kqþ hðtÞdq ¼ sðtÞ. (A.1)

By normalizing the eigenvectors in such a way that the modal masses have unit values, the equation of motion
simplifies to

I€qþ ½2zjoj�_qþ ½o2
j �qþ hðtÞdq ¼ sðtÞ, (A.2)

where I is the identity matrix, brackets denote diagonal matrices, oj is the jth natural frequency defined from
the undamped system in the absence of parametric excitation, and zj is an equivalent viscous damping for the
jth mode.

Matrix Eq. (A.2) can be rearranged by transferring the parametric excitation terms to the right-hand side
thus

I€qþ ½2zjoj�_qþ ½o2
j �q ¼ sðtÞ � hðtÞdq (A.3)

in such a way that the left-hand side corresponds to the uncoupled part of the equations of motion.
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If we want to find a bounded steady-state response to the external forced system, the homogeneous time-
varying counterpart of Eq. (A.3) must be asymptotically stable, which we will assume later. In this case the
free response vanishes as time increases. Thus the Fourier transforms of both sides of Eq. (A.3) can be
obtained by retaining only stationary terms, and yields

½�o2 þ 2izjoj þ o2
j �~qðoÞ ¼ ~sðoÞ � ð ~h� d~qÞðoÞ, (A.4)

where the tilde denotes Fourier transforms of time functions and � denotes convolution.
By introducing the diagonal matrix ½HjðoÞ� which represents the modal frequency response functions

classically defined as

HjðoÞ ¼
1

o2
j � o2 þ 2izjojo

(A.5)

the matrix equation expressed in the frequency domain and which governs the steady-state response of the
dynamic system under combined parametric and external excitations can be changed to its final form of

~qðoÞ ¼ ½HjðoÞ�~sðoÞ � ½HjðoÞ�ð ~h� d~qÞðoÞ. (A.6)

We propose to solve this matrix equation iteratively by using successive approximations

~qpþ1ðoÞ ¼ ~q0ðoÞ � ½HjðoÞ�ð ~h� d~qpÞðoÞ. (A.7)

For the initial estimate, the approximate solution is obtained by cancelling out the parametric excitation; it
then matches that of the corresponding ‘‘time-invariant’’ system:

~q0ðoÞ ¼ ½HjðoÞ�~sðoÞ. (A.8)

In practice, Eq. (A.7) is iterated until convergence is reached. We have introduced some stop criteria. Firstly,
one must impose a maximum number of iterations, beyond which divergence of the solution is assumed.
Secondly, we make a convergence test on the measurement of the incremental vector. In practice, at the nth
step, we calculate the relative error e defined by

e ¼
sn � sn�1j j

snj j
(A.9)

which is compared to a sufficiently small value previously imposed. In Eq. (A.9), sn denotes the root mean
square value of coordinates qn and |u| a norm of vector u. Actually, this criterion is not rigorous but it appears
that using this criterion was always sufficient in our numerical simulations. Thus no other convergence tests
have been tried.

The iterative spectral method allows the response spectra for each degree of freedom to be computed
directly. The first advantage of the proposed method is that the approximate solution can be constructed, as
and when iterations progress, without previous knowledge of their spectral contents. This assumes the choice
of a programming language which permits dynamic data storage. In addition, by using dynamic data we can
consider only non-zero spectral components, and so work over a large bands of frequency without loss of
efficiency. Also, because the convolution product is directly computed on the frequency domain, we obtain a
far from negligible gain in computing time compared to other methods. Finally, more details can be found in
Ref. [31] where comparative studies are presented.
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